Сергей Шпилькин / Thursday, July 2, 2020 / Categories: Articles by geography, Russia, Moscow (city of), Dependence of results on the turnout, Kiesling-Shpilkin method Moscow and the Motherland are united Not really, the slight bend of the Moscow tail downwards shows that Moscow was rather topping up than overshooting - and you can only hit the point (100%, 100%) by overshooting. UPD: Mistake in the legend. Where it says "norm votes", it should read simply "votes" - including anomalous Print 23644 Tags: RF Constitutional Referendum 2020 Данные для статьиfullLaboratory support for articlefullDossier's BlockRF Constitutional Referendum 2020Theoretic depthObservation More links Пост в Фейсбук автораИсточник Related articles A triumphant victory over myself A bell, a saw, an axe Dependence of "Yes" share on types of turnout Russia Constitutional Referendum 2020 Please login or register to post comments.
Sergei Shpilkin "Statistical Analysis of Elections" Sergei Shpilkin "Statistical Analysis of Elections" Presentation at the I Round Table of Mathematicians Сергей Шпилькин / Friday, December 15, 2017 0 36888 Sergey Shpilkin "Statistical Analysis of Elections" Presentation at the First Roundtable of Mathematicians Read more
Boris Ovchinnikov "Statistics against electoral fraud" Boris Ovchinnikov "Statistics against electoral fraud" Presentation at the I Round Table of Mathematicians Boris Ovchinnikov / Friday, December 15, 2017 0 13994 Boris Ovchinnikov's presentation "Statistics against electoral fraud" Read more
Lev Krylenkov.Identification of drawn results Lev Krylenkov.Identification of drawn results Presentation at the I Round Table of Mathematicians Lev Krylenkov / Friday, December 15, 2017 0 13001 Lev Krylenkov shows in his presentation on how fraud was detected in the 2014 St. Petersburg gubernatorial election. Read more
Andrei Buzin Megastatistics of Russian quasi-elections Andrei Buzin Megastatistics of Russian quasi-elections Presentation at the I Round Table of Mathematicians Андрей Бузин / Friday, December 15, 2017 0 20411 A.Y. Buzin's presentation at the I Round Table of Mathematicians. "Megastatistics of Russian quasi-elections". Andrey Buzin proposed an extension of the Sobyanin-Sukhovolsky method. Read more
Azat Gabdulvaleev. Elections in graphs. Overview of Russian cities. Azat Gabdulvaleev. Elections in graphs. Overview of Russian cities. Presentation at the I Round Table of Mathematicians Azat Gabdulvaleev / Friday, December 15, 2017 0 12273 Azat Gabdulvaleev's presentation at the First Round Table of Mathematicians. Read more